User Tools

Site Tools


prediction

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
prediction [2021/01/29 22:35] – [Design data panel] krianprediction [2021/01/30 14:22] (current) – [Model explanation] krian
Line 31: Line 31:
 {{ ::morethantwoclass.png?nolink |}} {{ ::morethantwoclass.png?nolink |}}
  
-==== Species ====+==== Species (For training)====
 Here we must choose the species of our experiment.  Here we must choose the species of our experiment. 
 You can choose among: You can choose among:
Line 38: Line 38:
   * Rat (Rattus norvegicus).   * Rat (Rattus norvegicus).
 {{ ::species.png?nolink |}} {{ ::species.png?nolink |}}
-==== Experimental design ====+==== Experimental design (For training)====
 This panel includes further parameters necessary to run an analysis.\\  This panel includes further parameters necessary to run an analysis.\\ 
-**Rank and filter circuits**: Check to obtain the circuits that best differentiate your phenotype. This option is only available from //Prediction// tool.+**Rank and filter circuits**: Check to obtain the circuits that best differentiate your phenotype. This option is only available for the //Build new predictor// type.
 {{ ::filtercircuits.png?nolink |}} {{ ::filtercircuits.png?nolink |}}
 ==== Pathways ==== ==== Pathways ====
Line 89: Line 89:
 {{ ::circuitvaluespredreport.png?nolink |}} {{ ::circuitvaluespredreport.png?nolink |}}
 This matrix file indicates for each "effector circuit" the level of activation calculated using Hipathia method for each sample. This matrix file indicates for each "effector circuit" the level of activation calculated using Hipathia method for each sample.
-==== Model training ====+==== Model evaluation ====
 Here you can visualize the results from the prediction analysis.  Here you can visualize the results from the prediction analysis. 
-  * **K-fold cross-validation**: The number of equal sized subsamples in which the original sample is randomly partitioned.+ 
 +=== K-fold cross-validation === 
 + 
 +The number of equal-sized subsamples in which the original sample is randomly partitioned. 
 +Then a table for test model statistics is showed, each value represents the mean across the holdout folds for the corresponding metric or score: 
 {{ ::k-foldcrossvalidation.png?nolink |}} {{ ::k-foldcrossvalidation.png?nolink |}}
-  * **SVM-RBF hypermeter performance** + 
-{{ ::hyperparameterpredreport.png?nolink |}} +=== Validation of typical split === 
-  * **Test model statistics**: + 
-{{ ::testmodelstatistics.png?nolink |}} +Then you will find several plots for train-test split validation, where we randomly holdout 30% of the data for the test while the remaining samples are used for training the model. The plots represent the receiver operating characteristic and precision and recall curves for each split. 
-  * **Split Train pr**:+ 
 +  * **Split Train precision and recall**:
 {{ ::splittrainpr.png?nolink |}} {{ ::splittrainpr.png?nolink |}}
-  * **Split Train roc**:+  * **Split Train receiver operating characteristic**:
 {{ ::splittrainroc.png?nolink |}} {{ ::splittrainroc.png?nolink |}}
-  * **Split Test pr**:+  * **Split Test precision and recall**:
 {{ ::splittestpr.png?nolink |}} {{ ::splittestpr.png?nolink |}}
-  * **Split Test roc**:+  * **Split Test receiver operating characteristic**:
 {{ ::splittestroc.png?nolink |}} {{ ::splittestroc.png?nolink |}}
-==== Prediction model ====+ 
 +=== Probability distribution === 
 + 
 +Here you can find a boxplot for the (predicted) probability distribution of the positive class over the test split with respect to the original labels: 
 +{{ ::testprobdistboxplot.png?nolink |}} 
 + 
 +Then we show a table with the statistics of the model over the test set, in the same format as the one presented for the k-fold experiment. A well suited model for the problem at hand should not present a huge gap between the performance during the training and testing phases: 
 +{{ ::testmodelstat.png?nolink |}} 
 +==== Model explanation ==== 
 + 
 +Here you will find a table with the most relevant circuits along with their interaction sign. 
 +You can download the filtered circuits that best differentiate your phenotype. This section is only available when selecting //Rank and filter circuits// option.
 {{ ::predictionmodelreport.png?nolink |}} {{ ::predictionmodelreport.png?nolink |}}
  
-==== Model statistics ==== +===== Test report ===== 
-You can download the model statistics+When you select //Use existing predictor// you will have a different report for your test prediction study
-  * **Selected features**You can download the filtered circuits that best differentiate your phenotype. This section is only available when selecting //Rank and filter circuits// option.+The test report is divided into four different panels: 
 +{{ ::testpresdictionreport.png?nolink |}} 
 +==== Study Information ==== 
 +As explained before, here you can find the information about the current study. 
 +==== Input Parameters ==== 
 +The parameters with which the test study was launched, such as the name of the used expression file and the Species. 
 +==== Circuit values ==== 
 +This matrix file indicates for each “effector circuit” the level of activation calculated using Hipathia method for each sample. 
 +==== Prediction model ==== 
 +This is the most important result, this table is the predicted design file for your selected expression matrix using a previously trained model. 
 + 
 + 
 ===== Workflow ===== ===== Workflow =====
 The prediction tool is based on a machine learning module, this module of the Hipathia web tool can be summarized as follows: The prediction tool is based on a machine learning module, this module of the Hipathia web tool can be summarized as follows:
Line 143: Line 172:
       * Note that all curve visualizations have been done using the specialized R package ''PRROC'' [3]       * Note that all curve visualizations have been done using the specialized R package ''PRROC'' [3]
  
 +/*
 === Breast Cancer Molecular Subtype Classification === === Breast Cancer Molecular Subtype Classification ===
  
Line 261: Line 290:
  
 {{ :test_probability_boxplot.png?400 | ROC curve for the test split. }} {{ :test_probability_boxplot.png?400 | ROC curve for the test split. }}
 +*/
  
 ===== Bibliography ===== ===== Bibliography =====
prediction.1611959719.txt.gz · Last modified: 2021/01/29 22:35 by krian